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SYNOPSIS 

When linear, conservative, molecular forces are used in this bead-spring model of a polymer 
solution, a viscoplastic constitutive equation results. Using nonlinear intramolecular forces 
removes this viscoplasticity. The analysis shows that the anisotropy of the normal stresses 
is related to the anisotropy of the molecular forces. At the theta temperature the anisotropy 
of the intramolecular force alone determines the normal stress anisotropy. Nonlinear mo- 
lecular forces are necessary for the analysis to predict a shear rate dependence for the 
stress in steady homogeneous flow. The symmetry of the stress tensor constrains the Hooke's 
law constants used to model the molecular forces. No overshoot is predicted for the stress 
response to a step change in shear rate when linear forces are used. Using linear forces, 
the stress response to a unit step shear rate shows a tendency of the polymer solution to 
undergo plastic deformation and to take a set. 

INTRODUCTION 

Lodge' has called to the attention of polymer sci- 
entists the need for a model of a polymer solution 
in which the macromolecules perturb the solvent. 
In a previous study,2 we attempted to satisfy that 
need in a general fashion. That analysis substituted 
the usual friction coefficient force coupling between 
the solvent and the polymer with an arbitrary dis- 
persion force based interaction. To apply this model, 
the form of the inter- and intramolecular forces must 
be specified. In this paper, we report the predictions 
yielded by the model when linear, anisotropic, con- 
servative, and monogenic nonconservative forces are 
used. 

We recognize that linear molecular forces are an 
unrealistic prediction for the actual forces both 
within a macromolecule and between the macro- 
molecules and the solvent. However, we believe it is 
prudent to first analyze using linear forces before 
undertaking the more formidable task of using non- 
linear ones. The wisdom of this approach is twofold. 
By examining the consequences of using linear 
forces, we gain insight into the relationship between 
the rheological behavior of the polymer solution and 
a set of simplified molecular parameters unemcum- 
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bered by tedious mathematics. It also gives us the 
opportunity to evaluate what, if anything, the use 
of nonlinear force laws would add to the analysis. 

Our primary objective is to determine what form 
of the molecular force laws best predicts the normal 
stress anisotropy observed in shear flow experi- 
ments. While doing so, we hope to achieve a better 
understanding of this phenomenon on a molecular 
level. The example given in our earlier study2 showed 
that using isotropic linear forces predicts a second 
normal stress difference equal to the negative of the 
first for simple shear flow. This prediction is incon- 
sistent with experiments, which show that the sec- 
ond normal stress difference has a magnitude much 
smaller than that of the first. Therefore, we now 
evaluate the consequences of using anisotropic linear 
forces. 

We also point out that our previous example used 
a homogeneous force law, i.e., the force law contained 
no constant term. A homogeneous (linear) force law 
precludes evaluating the stresses in anyway other 
than as a relationship between them. Mathemati- 
cally, this results because a homogeneous force law 
yields a homogeneous system of equations for the 
stresses. Physically, this results because these force 
laws consist always of either attraction or repulsion 
only, i.e., the force does not change sign. 

A homogeneous intramolecular force law is useful 
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in the Rouse 3-Zimm models because they include 
a Brownian motion force that extends the springs 
of the polymer chain when the solution is at equi- 
librium. Mathematically, the Brownian motion force 
provides the nonhomogeneous terms in the system 
of equations governing the stresses. In this paper 
we use nonhomogeneous force laws and show how 
the stresses are expressed in terms of their param- 
eters. 

When specifying the molecular forces, we include 
the possibility that the stress tensor may be asym- 
metric. Although no experiments have yet measured 
any asymmetry for the stress tensor, including the 
possibility enables us to evaluate what influence the 
molecular forces have in maintaining a symmetric 
stress. Curtiss5 shows how the rotational motion of 
nonspherical molecules leads to an asymmetric con- 
tribution to the stress tensor. Green‘ points out that 
the intramolecular force exerted by nonspherical 
molecules need not have spherical symmetry. Since 
polymer molecules in solution, and especially when 
the solution is in motion, will not generally have 
spherical symmetry, it interests us to see what con- 
straints, if any, must be imposed on anisotropic mo- 
lecular forces so that they predict a symmetric stress. 

We begin the analysis with a brief review of the 
model. Initially, we analyze using conservative 
forces. We evaluate the polymer’s intramolecular 
contribution to the total stress using nonhomoge- 
neous linear forces for both the intramolecular in- 
teraction between adjacent beads on the polymer 
chain and the intermolecular interaction between 
each bead on the chain and the solvent. We then 
restrict ourselves to consider steady homogeneous 
flow and report the equations governing the asym- 
metric intramolecular contribution to the total 
stress. 

To reduce the number of molecular parameters 
to a set that experimental data could fix, we use the 
concept of a theta solvent. We derive a constraint 
on the intramolecular forces to form a symmetric 
stress tensor. We report the steady state stresses in 
terms of the molecular force parameters and the time 
variation of the stress responding to a step change 
in the shear rate. Then we extend the analysis to 
include the use of monogenic nonconservative forces. 
We end by assessing what improvements the use of 
nonlinear forces could add to the analysis. 

DEVELOPMENT 

Review 

We begin with a review of the model.2 The total 
stress in the polymer solution consists of a contri- 

bution each from the solvent and the solute. For a 
Newtonian solvent, the total stress has the form 

where P, is the solvent’s contribution to the isotropic 
pressure and vs is its viscosity. 6 is the unit tensor 
and + is twice the rate of strain tensor. The poly- 
mer’s contribution to the total stress consists of the 
sum of the isotropic kinetic contribution u (’’ and 
the intramolecular contribution u. 

The polymer’s kinetic contribution to the total 
stress is given by 

where np is the local polymer density, k B  is Boltz- 
mann’s constant, and T is the absolute temperature. 
For our present needs, we neglect all concentration 
gradients and thereby take np as constant. 

The intramolecular contribution is the sum of 
contributions from each spring of the bead-spring 
chain. For a chain composed of a beads we have 

a-1 

a =  Cak 
k = l  

where 

ah = \ \Qha@/aQk\ \ (3b) 

A prime on a variable signifies a transformation into 
the normal modes. Qk is the spring vector or relative 
position vector between two adjacent beads. @ is the 
intramolecular potential that binds two adjacent 
beads. The double backward slashes signify a joint 
solvent-polymer ensemble average. 

The governing equation for ah is 

a-1 

rnp Duk/Dt + (&/&)-I  : 2 ai 
i = l  

where the ai are the eigenvalues of the Rouse3 ma- 
trix, mp is the mass of a bead, au/ar is the bulk flow 
velocity gradient, and r is the intermolecular po- 
tential between the solvent and the beads of the 
polymer chain. Equation ( 4 )  was derived using the 
restriction that the molecular forces arising from 
both r and @ are conservative. In the first part of 
this Development section we maintain this restric- 
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tion. In the latter part we relax it to include mono- 
genic nonconservative forces. 

Anisotropic Forces 

Nonhomogeneous Linear Forces 

The analysis of the intramolecular contribution to 
the total stress requires that we specify both r and 
+. We consider linear force laws of the form 

where I ,  H,  b ,  and d are all arbitrary (constant) 
parameters. 

Since the force laws given by eqs. ( 5 )  are con- 
servative, we may use them in eq. (4) to find 

mp Dok/Ddt + 2 ( a  - l ) ( h / d r ) - '  : ( I  + H)oL 

+ a k ( h / d r ) - '  : ( I  + H )  .\ \Qk6 d+/dQk 

+ Qk(Qk - d ) H \ \  = ak(du/dr)-' 

: [ I -b6H*( \ \Qk\ \  - d )  + I * ( b \ \ Q k \ \  

- \ \Qk\ \d)H - H*\\Qk\ \dHl  (6)  

The quantity \ \Qk\ \ appears in the above equation 
so we must derive and solve the governing equation 
for it. 

\ \Qk\ \ represents the ensemble average config- 
uration of a spring in the polymer chain. To obtain 
its governing equation, we may either derive it from 
the equation governing the polymer configuration 
space distribution, in a manner similar to that shown 
for \ \Qkd+/dQk\ \ in Grisafi,2 or we may replace 
d+/dQk in eq. ( 4 )  with scalar unity. Either way, the 
governing equation for \ \Qk\ \ is 

To simplify the notation, we let Rk designate 
\ \Qk\ \. Substituting the force laws of eq. ( 5 )  into 
( 7)  yields 

mp DRk/Dt + a k ( h / d r ) - '  : ( I  + H )  -Rk6 

+ 2 ( a  - l ) ( d u / d r ) - '  : ( I  + H)Rk 

= ak(du/dr)-' : ( I - b  + H . d ) 6  (8) 
Equation (8) must first be solved when solving (6) .  

Steady Homogeneous Flow 

To evaluate the consequences of the force laws given 
by ( 5 ) ,  we consider steady homogeneous flow. We 
let + be the (constant) shear rate of this flow so 
that the velocity gradient is 

where 61 and A2 are the unit vectors in the flow and 
shear directions, respectively. The primary restric- 
tion in this case is that of stationary conditions. No 
matter what the actual bulk flow velocity field may 
be, the velocity profile that the macromolecules ex- 
perience can usually be approximated with a lin- 
ear one. 

Regardless of whether or not any one macromol- 
ecule can distinguish between a homogeneous or a 
nonhomogeneous flow, the symmetry of viscometric 
flow requires that we set up3 = ~ 3 2  = 613 = ~ 3 1  = 0 
because the stress tensor must be invariant with re- 
spect to a rotation of the coordinate axes. As a con- 
sequence of this, we must also set H23 = H32 = H13 

= H31 = 0. The intermolecular force constants re- 
main completely arbitrary; I may be symmetric or 
asymmetric, isotropic or anisotropic. Although it 
must have the restriction given above, H need not 
be symmetric, i.e., H2, need not equal H12. 

With the -restriction on u ,  ( 6 )  yields a system of 
five linear equations for the unknowns u12, ~ 2 1 ,  u11, 

u22, and The five equations are: 

11 component 

22-component 
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33-component 

12-component 

21-component 

where ( R 2 ) k  is the shear direction component of Rk 
and 

is the mean configuration of the polymer chain. 
The parameters I ,  H , b , and d provide the model 

with more degrees of freedom than experimental 
data can fix. We need to consider physical situations 
that reduce the number of force constants to those 
that could be fitted to experimental data. For this 
purpose we consider a theta solvent. But, first, we 
note that solving for u12, uZl, ull ,  u22, and u33 in 
terms of the complete set of force constants is te- 
dious, but straightforward. The resulting expressions 
are long and will not be reported here other than to 
report that 

This shows that, regardless of the intermolecular 
force between the solvent and the polymer, if Hll 

= H33, the model predicts that the second normal 
stress difference equals the negative of the first. 
Thus, it would appear that the intramolecular 
Hooke’s law constants have greater bearing on the 
normal stress anisotropy than do the intermolecular 
constants. 

Theta Solvent 

The effect of the intermolecular force is to perturb 
the configuration of the macromolecule. For a poor 
solvent, it may occur that the macromolecule attains 
its unperturbed dimensions. This occurs at the so- 
called theta temperature. We expect that H + I for 
a poor solvent. Therefore, we consider the limit 
where I goes to zero and call this condition that of 
a theta solvent. Physically, this amounts to im- 
mersing the polymer in a solvent field of constant 
potential energy, the value of which is, of course, 
irrelevant. 

For simplicity, we assume that H is symmetric, 
but anisotopic; 

Also, we take d to be isotropic; 

With these simplifications, the mean configura- 
tion of a spring on the polymer chain in steady ho- 
mogeneous flow is 

Rk = (R2)k62  

= a k / [ Z ( a  - 1) + akld( l  + H11/H)62 (15) 

Equations ( 10) governing the steady state stress are 
greatly simplified for a theta solvent. We simplify 
them further by equating r12 and uZ1, thereby cre- 
ating a symmetric stress. Doing so reduces the num- 
ber of unknowns in eqs. (10) to four and reduces 
the system of equations to four equations plus one 
constraint. 

The constraint restrains the values of the ratio 
H Z 2 / H  to those of Hll/H for each value of a. The 
constraint is 

[ 4  - l / ( a  - 1)1(H11/H)2 + (1 + HZZ/H)Hll/H 

+ ( a  + 1)H22/H + 1 / ( a  - 1) - a - 3 = 0 (16a) 

where we have used 

a-1 

2 
k = l  

= 6 ( a  - 1) - 2 



By using only those ordered pairs of values for Hll/ 
H and H2,/H that satisfy (16a), we maintain the 
symmetry of the stress tensor. 

The steady state intramolecular contributions to 
the symmetric stress in homogeneous flow with a 
theta solvent are 

where 

and H22/H is constrained to Hll/H by eq. ( 16a). 
Equations (17) have five degrees of freedom. 

Measurements of the unperturbed dimension of the 
linear macromolecules can be used to fix d by using 
eq. (5). This leaves the intramolecular Hooke’s law 
constants H, HI1, H22, and H33 to be specified. Mea- 
surements of the ratio of the shear stress to the first 
normal stress difference can fix Hll/H. Measure- 
ments of the ratio of the first to the second normal 
stress difference can then fix H33 / H. The material 
functions can then all be scaled to the appropriate 
magnitude by fixing the value of H with an absolute 
measurement of the shear stress. So, using the con- 
cept of the theta solvent reduces the degrees of free- 
dom to a set that is experimentally verifiable. 

Response to a Unif Step Shear Rate 

We now consider a transient approach to the steady 
state considered in the previous subsections. For all 
time prior to that which we call time zero, we assume 
an absence of stress and no preferred configuration 
for the polymer molecules. At time zero, we impose 
a unit step shear rate. This requires that we consider 
the transient equations governing R and u. 

The governing equations for the components of 
each spring vector contributing to R in a theta sol- 
vent are 

is the time constant for the vibration mode corre- 
sponding to ak and +o is the magnitude of the applied 
shear rate. 

The initial conditions for these differential equa- 
tions are 

Solving the equations with these conditions yields 
the time variation of the mean chain length to be 

Equation (19) predicts a monotonic approach to the 
steady state value for R. 

The governing equations for the transient re- 
sponse of all the vibrational modes contributing to 
the intramolecular stress are 

where Hll/H and H22/H are constrained by 
eq. (16a). 

The initial conditions are ak = 0 for t I 0. The 
response of the stresses to the applied shear rate is 
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From eqs. (21) we obtain the time variation of 
the first and second normal stress differences as well 
as that of the shear stress. Figures 1,2,  and 3 show 
these results normalized to their steady state values 
of some values of the parameters. Note that the 
graphs show no overshoot for the transient response. 
Also, since the steady state stresses are independent 
of the shear rate, eqs. (21 ) predict that the polymer 
solution is viscoplastic: The polymer solution de- 
forms plastically and takes a set. 

Monogenic Nonconservative Forces 

Purpose 

In the preceding subsection of the Development 
section, we show that the steady state intramolecular 
contribution to the total stress in homogeneous flow 
is independent of the shear rate when linear forces 
are used. A consequence of this is that it predicts 
that the polymer viscosity is shear thinning in pro- 
portion to the reciprocal of an increasing shear rate. 
We also saw that no overshoot is predicted for the 
stress responding to a unit step in the shear rate. 
The question arises as to whether these predictions 
result from the linearity of the molecular forces or 
from their conservative nature. 

One cannot say with certainty whether or not the 
use of nonlinear forces would predict the steady state 
stresses to be anything other than independent of 
the shear rate without having first developed a 
mathematical proof for the general class of nonlinear 
functions suitable as models of the molecular forces. 
An easier route to take is to extend the analysis to 
include nonconservative forces and then assess the 
changes made to the constitutive equation. 

We need to explain the distinction between con- 
servative and nonconservative forces. So that we 
may retain the concept of a molecular potential, e.g., 
I’, 9, and E ,  we consider only those nonconservative 
forces that are derivable from a single scalar func- 
tion. Following Lanczos, we call such forces mono- 
genic. According to L a n c ~ o s , ~  if a molecular poten- 
tial does not depend explicitly upon time, it is said 
to be scleronomic. The total energy of a scleronomic 
mechanical system is a constant of its motion. This 
holds true whether or not the forces between the 
particles depend upon the velocities. However, if 
they do, we need to distinguish between the potential 
energy of the system and its work function. As 
Lanczos7 points out, the work function is really the 
fundamental quantity in analytical mechanics. 
When the forces depend upon the velocities, the 
mechanical system still obeys a conservation law, 
but now the work function is no longer equal to the 
negative of the potential energy. For simplicity, we 
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Figure 1 Dimensionless intramolecular contribution to 
the shear stress responding to a unit step shear rate. Part 
( a )  is for a polymer chain composed of 10 beads; part ( b )  
is for 50 beads; (c  ) is for 100 beads; (d )  is for 500 beads. 
The ordinate of each graph is the shear stress normalized 
by its steady state value. The abscissa is dimensionless 
time: t H /  ( mp+o) .  Each curve is marked by its value of 
the parameter H , , / H .  
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Figure 2 Dimensionless first normal stress difference 
responding to a unit step shear rate. Part ( a )  is for a 
polymer chain composed of 10 beads; part ( b )  is for 50 
beads; ( c )  is for 100 beads; ( d )  is for 500 beads. The or- 
dinate of each graph is the stress difference normalized 
by its steady state value. The abscissa is dimensionless 
time: tH/(rn, ,yo).  Each curve is marked by its value of 
the parameter H I ,  / H. 

retain the use of the molecular potentials r, 9, and 
E ,  but refer to them as nonconservative when they 
depend upon the molecular velocities. 

Lagrangian Mechanics 

When considering velocity dependent molecular 
potentials the forces arising from them are not ob- 
vious. We must abandon the vectorial approach to 
mechanics and rely upon Lagrangian mechanics t o  
conserve momentum. We define the Lagrangian for 
our system as 

a 

L = i m s r s - r s  + imp 2 rp-r, - F - 9 - E (22) 
p=1 

where the subscript s signifies the solvent. 

of the polymer chain are 
The Lagrangian equations of motion for the beads 

d(dL/dr,)/dt  - aL/ar, = o (23) 

for p = 1,2,3, - - - , a. Using the Lagrangian for our 
system in (23) yields 

mPr, = d [ d ( I '  + @ + E)/dr , ] /d t  

- d ( r  + 9 + E) /dr ,  (24a 
where 

i;, = di, /dt  - +(r,-dr,/dr, + arJarp.r,,) (24b 

is reference frame indifferent. When the first term 
on the right-hand side (rhs) of (24a) vanishes, the 
force law reduces to that for conservative forces. 

Now, 

d [ d ( r  + 9 + E) /dr , ] /d t  = d2(r + 9 + E ) /  

d t l d r ,  + r , . d 2 ( I '  + 9 + E)/dr,/dr, (25) 

0.50 1 1 0.50 1 / 

0 0 0  0 0 1  0 0 2  0 0 0  001 0 0 2  

Figure 3 Dimensionless second normal stress difference 
responding to a unit step shear rate. Parts ( a )  and (b)  
are for a polymer chain composed of 10 beads; ( c )  and 
( d )  are for 100 beads. Parts ( a )  and ( c )  are for H 3 3 / H  
= 0; ( b )  and ( d )  are for H 3 3 / H  = 1. The ordinate of each 
graph is the stress difference normalized by its steady state 
value. The abscissa is dimensionless time: tH/ ( r n p y 0 ) .  
Each curve is marked by its value of the parameter 
HIJH. 
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We assume that the molecular potentials do not de- 
pend explicitly upon time, i.e., they are scleronomic. 
Then the first term on the rhs of (25)  vanishes. The 
equations of motion for the beads become 

m,r, = - d ( r  + 9 + E)/dr, + r, * 

x d 2 (  r + 9 + E)/dr,/dr, (26)  

From this point on, the analysis parallels that in 
Grisafi.2 

The polymer phase space is conserved by 

where f ,  is the polymer phase space distribution 
function. We define the peculiar velocity for a bead 
as 

v, = r, - u(r,) 

The substantial derivative for f p  is 

D f p / D t  = d f , /d t  + '2 u(r,) 
a 

,= 1 

We substitute the expression for the acceleration of 
a bead, found from eq. (26 ) ,  into (27) .  Then, using 
the definitions of the peculiar velocity and the sub- 
stantial derivative yields 

p = l  

X f , ( d (  r + @ + E)/dr, 

- r,.d2(I '  + 9 + E)/drJdr,)] (30) 

Note that we have not assumed that the peculiar 
velocity is a solenoidal field as in Grisafi.2 

We define the velocity space average of an arbi- 
trary dynamic variable B as 

where f2 signifies the velocity space domain. Using 
this average, the polymer configuration space dis- 
tribution (CSD) function becomes 

Taking the velocity space average of eq. (30) 
yields 

m, Dg,/Dt = 5 fi J d3vs a/ar, - 
,,=I e = i  

x f , ( d (  r + 9 + E)/dr, 

- r, .d2(r + @ + E)/dr,/dr*) (33) 

where the average over the first rhs term of (30) 
vanishes by definition of the peculiar velocity. 

We expand the divergence in the integral of (33) 
and apply chain rule differentiation. After some 
rearrangement it becomes 

where u, signifies u ( r c )  . 
We transform from the set of bead coordinates, 

{ r,} , to the center of mass coordinates, r,, and the 
set of spring coordinates, { Qi} ,  where i = 1, 2, 3, - - * , a - 1. The transformation is accomplished by 

a 

Qi = C (35a) 
,=1 

and 

a-1 

r, = r, + 2 BLiQi 
i = l  

where 

BLi = ( i  - p ) / a  for p I i 

f o r p >  i (35d) = i / a  

We simplify the analysis by neglecting all con- 
centration gradients. As noted in Grisafi,2 the po- 
tential E must then vanish. Transforming variables 
in (34) yields 
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a a - l a - l a - 1  

where r is any position in the fluid, 

is the Rouse3 matrix, and 

We now decouple the modes of vibration for the 
bead-spring chain with an orthogonal transforma- 
tion. We transform the Rouse matrix with 

expecting that this will also simplify Gi@ to some 
extent. Transforming equation (36) yields 

a a-1 

mp Dgp/Dt = 2 C BLi(a/au,.a(r + @ ) / a Q : )  
p=1 i=l 

a a - l a - l a - 1  

where the Q: are the eigenvectors of the Rouse3 ma- 
trix, 

and 

In the absence of all concentration gradients the 
solvent CSD is the constant solvent density. It is a 
mere formality to average eq. (39) over the solvent 
phase space. Doing so yields 

mpD\gp\,/Dt= 2 2 BLi\ 
a a-1 

p = l  i=l 

( a / a u , - w  + W ~ Q : ) \ ,  
a a - l a - l a - 1  

- 2 2 2 2 BkpBLjBLi\ 
,=I i-1 j - 1  k-1 

( d / & , * ( Q k  .d2(r + @)/aQi/dQE))\, 

+ (au/dr)-' : C ai\d(d(r + @ ) / a Q : ) / a Q :  

- (a2(r + @)/dQ:/dQ:)\ ,  - a(du/dr)-' 

a-1 

i=l 

a - l a - l a - l a - 1  

: 2 2 2 2 G:jkl  
i -1  j = 1  k=l  1-1 

x \a(Qk .a2(r + @ ) / a ~ j / a Q : ) / a ~ ;  
- (ace:, .a2(r + @ ) / a ~ ; / a Q : ) / a ~ ; ) \ ,  (41)  

where each pair of backward slashes, with its sub- 
script, denotes an average taken over the solvent 
phase space. 

To form the governing equation for the intra- 
molecular contribution to the total stress, we 
multiply eq. (41) by (QAQ:, -a2@/dQ'm/dQ: ,  
- Q',d@/aQ',) and then average over the polymer 
configuration space. Doing SO and applying chain 
rule differentiation yields 

a a-1 

mpDa,/Dt = 2 2 BLi\\(a/aup.a(r + @ ) /  
p=l i=l 

a~ : ) (aha:,  . a 2@ /aQ:,/aQ:, 
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where 

and the double pair of backward slashes, without 
subscripts, denotes the joint solvent-polymer av- 
erage. 

Equation ( 4 2 )  is the most general constitutive 
equation for this model when using scleronomic, 
monogenic, molecular forces. We may simplify this 
if we consider that the molecular potentials probably 
do not vary with the bulk flow velocity, or if they 
do, the variation is negligible over the size of a mac- 
romolecule. With this assumption, eq. ( 4 2 )  reduces 
to 

mp Da,/Dt + (du/dr)-'  : 
a-1 

ai\\(d(r + a) /  
i= 1 

aQ:)a( Q',QL*a2'P/aQX/aQ:, - QL a@'/aQ',)/ 
aQ', + ( d 2 ( r  + 'P)/dQ:/aQ:) 

x ( a:,Q:,. a2@/aQ:,/aQ:, - Q:, awaQ:,)\ \ 
a-la-la-la-1 

= a ( h / d r ) - '  : c 2 C C G!,.kl 
i=l j-1 k=l 1=1 

\ \( Q k  d2 ( I' + 'P) /dQj/dQ:)a( Ql,Q& * a2@/  

aQk/aQA - Q',a@'/aQk)/aQi 

We may now consider specific forms for the molec- 
ular forces. 

Linear Intramolecular Force 

We proceed as we have done for the conservative 
force case. We consider a polymer solution at  the 
theta temperature with an intramolecular potential 
such that 

where d is the same intramolecular length scale as 
for the conservative force law and w is a time con- 
stant. 

We define w such that 

i iW 6,s = aQ:/aQ; ( 4 6 )  

and so w # 0. Using the force law of eq. ( 4 5 )  in ( 4 4 )  
and evaluating for a theta solvent yields 

mp Da,/Dt + [ 2 ( a  - 1 )  + a 2 / 6 ( a 2  - a + 111 

X (du/dr)-'  : Ha, 

= a,(du/dr)-' : \ \H. (Q' ,  - w(Q',)  - d)  

X [6H*(QL - w ( Q ' , )  - d)  + Q',H 

+ s ( w ( Q h )  + Q A )  + Q',) * H I \ \  

+ aw(au/ar)-' : c & m \ \ ( Q k )  - a-1 

k=l 

X H[GH-(Qh - w ( Q A )  - d )  + Q',H 

+ s ( w ( Q l , )  + Qh)  * H I \ \  ( 4 7 )  

where 
a- 1 

S k m  = C G:ik, = ( a  - m ) ( 2 k  + 1 - 1/a) 
i= 1 

for k I m 

( 4 8 )  = - 2 k m / a  for k > m 

We see from eq. ( 4 7 )  that we must also have 
equations for \\Q',\\ and \\(Qh)\\. To sim- 
plify the notation, we let R, = \ \ & A \ \  and R 
= \\(Q:,)\\. 

Governing Equation for R, 

First, we derive the governing equation for R,. To 
do this, we may either return to eq. (41) ,  multiply 
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it by Q A  and proceed in the same manner as before, 
or we may replace Q; .a2@/aQ:,/aQ:, - a@/aQ:, 
in eq. (42) with scalar unity. Doing so either way 
yields 

Equation (49) shows that R,, as well as u,, depends 
upon R,. We now derive the governing equation 
for it. 

Governing Equation for R, 

For the purpose of illustration, we return to the con- 
servation equation for all of phase space to derive 
the governing equation for R,. We return to eq. 
( 3 0 )  and transform to the independent variables 
from { r,,} to rc and { Qi}  . Then, neglecting all con- 
centration gradients yields 

a-1 a-1 

mpDfp /Dt  = C C Ajka/aQ,.(fpa(r + @ ) / a % )  
j = l  k=l  

a-1 a-1 a-1 0-1 
- 2 2 C GijkldlaQi' ( fp&j '  

i-1 j = 1  k-1 1=1 

a a-1 

d2(r + @)/dQj/dQi) - mp C 2 Bi,,a/aQi.(fpVlr). 

(50) 

We multiply equation (50) by Q, and then av- 
erage over the polymer velocity space. Applying 
chain rule differentiation and simplifying yields 

,=1 i=l 

In the absence of all concentration gradients 

a-1 

v, = r, - u, = C BLiQi - u, (52) 
i=l 

so equation ( 51 ) becomes 

We now transform the independent variables with 
the same orthogonal transformation used before. 
Using the definition of the time constant w and after 
some rearrangement ( 53 ) reduces to 

We simplify further by neglecting any variation 
of the bulk flow velocity over the size of a macro- 
molecule. We expect that for all except very strong 
shear rates this assumption is valid. Doing so yields 

Averaging eq. ( 55 ) over the solvent and polymer 
configuration space yields the governing equation 
for R,. We substitute the intramolecular force law 
of eq. (45)  and evaluate at the theta temperature to 
find 

DR,/Dt - 3 a / w R ,  

And so we see that eq. (56) closes the set of equations 
needed to solve for Q, ) R,) and R,. 

Assessment 

Equations (47),  (49)) and (56) are a complete set 
needed to predict the intramolecular contribution 
to the total stress when using linear, nonconserva- 
tive forces. They may be compared with eqs. ( 6 )  and 
(8), which use conservative, linear forces. Aside 
from being more complex, the nonconservative 
equations have an additional degree of freedom pro- 
vided by the time constant w.  Our purpose for con- 
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sidering nonconservative forces was not to add new 
parameters, but to see how the fundamental char- 
acteristics of the conservative, linear force predic- 
tions would change. 

Comparing eqs. ( 4 7 ) ,  (49),  and (56) with ( 6 )  
and (8) shows that the equations using nonconser- 
vative, linear forces are of the same form as those 
using conservative, linear forces. Hence, stress 
overshoot in a step response experiment is not pre- 
dicted and the prediction for viscoplasticity remains. 
Thus, it appears that the conservative nature of the 
molecular forces is not responsible for these phe- 
nomena. 

This leads us to consider what changes would 
have to be made to enable the model to predict stress 
overshoot and to remove the prediction for visco- 
plasticity. We note that, if the parameters H or d 
were to vary with the shear rate, the steady state 
stresses would have a shear rate dependence. 
Whether or not this would cause the model to predict 
stress overshoot remains to be seen because the 
transient equations would have to be resolved. 

Giving either of the parameters H or d a shear rate 
dependence changes the linear intramolecular force 
law into a nonlinear one. This nonlinearity is with 
respect to Q: for homogeneousflow and with respect 
to both Q: and Ql for nonhomogeneous flows. Since 
neither thermodynamics nor statistical mechanics has 
identified a shear rate dependence for the intramolec- 
ular force within a polymer molecule, we are forced to 
resort to phenomenology and merely postulate one. 
If, for example, we were to assume that 

d = ~ + " ( 6 1  + 6 2  + 63) (57)  

where c and n are arbitrary parameters, then the steady 
state stresses would vary in proportionto ,i,2". 

CO NCLUS 10 N S 

We have seen that this molecular model of a polymer 
solution predicts viscoplastic behavior unless the 
polymer's intramolecular force has a shear rate de- 
pendence. Not having a theoretical basis for such a 
force, we must resort to phenomenology and pos- 
tulate one. Doing so removes the viscoplasticity 
prediction from the model, but it remains to be seen 
if this also causes the model to predict stress over- 
shoot in response to a step change in shear rate. 

The well-accepted notion of a symmetric stress 
tensor has led us to form a constraint upon the di- 
rectionality of the intramolecular force. To obtain 
predictions of the first and second normal stress dif- 
ferences consistent with experiments, it is necessary 
that the flow (first) and indifferent (third) direction 

normal components of the intramolecular Hooke's 
law constant be unequal. The second normal com- 
ponent of H may be selected independently of the 
third, but it is constrained to the first by the sym- 
metry of the stress tensor. This conclusion is based 
on the assumption that the intramolecular Hooke's 
law constant tensor is symmetric; an assumption 
adopted solely for convenience. 

The concept of the theta temperature, or solvent, 
simplifies the analysis and at  the same time shows 
that the intramolecular forces have greater bearing 
on the intramolecular contribution to the total stress 
than do the intermolecular forces. This may be an 
artifact of all models that use single molecule dis- 
tributions instead of higher order distributions. Be- 
cause we have used only single molecule distribu- 
tions, our analysis predicts only the polymer's ki- 
netic and intramolecular contributions to the total 
stress. Yet, the intramolecular forces are clearly of 
far greater magnitude than those between the poly- 
mer and the solvent, or even between polymer mol- 
ecules, so we have reason to believe that the intra- 
molecular contribution to the total stress dominates 
any intermolecular contributions. This would sug- 
gest that the use of single molecule distributions may 
be justified even when the polymer solution cannot 
be considered dilute. Based upon this belief, our 
model suggests that the feature of the solvent-poly- 
mer interaction most significant to rheology is to 
change the effective stress within a polymer mole- 
cule. 

The need to use anisotropic, molecular forces in 
this analysis to predict results consistent with ex- 
periments probably results from the simplicity of 
the model. Using nonlinear functions for the mo- 
lecular forces appears necessary for improving the 
agreement between this theory and experiments. 
Further complications to the molecular forces would 
be put to good use if their purpose is to identify the 
molecular phenomena of significance to rheology. 
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